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1. Network Architecture

Figure 1 presents our architecture design. The overall
framework is similar to [9], but we optimize the 2D encoder
and the 3D CNN decoders for the DFF task. Given B focal
stacks with N frames in each, we first reshape them into a
B ·N ×3×H×W tensor and pass it to the 2D CNN to ex-
tract features in four different scales. Four differential focus
volumes (DFVs) are then built based on the features, which
later are used to produce the focus probability distributions
volume in the corresponding scale as outputs. In the end, all
these outputs are upsampled with linear interpolation to the
full resolution (B ×N ×H ×W ) followed by depth prob-
ability regression for deep supervision at training time. At
test time, only the largest (Level 1 in Figure 1) scale output
is upsampled for the depth regression. Here, B,N,H and
W denote the batch dimension, the frame dimension, the
height dimension, and the width dimension, respectively.

For all the convolution layers in the figure, the three
numbers in the in-box parenthesis indicate the in-feature
channel number, the out-feature channel number, and the
convolution stride, respectively. The parenthesis below the
box presents the output size. All convolution layers use ker-
nel size 3, except “Conv2d 1” , “Conv2d proj” and the last
convolution in “upConv3d Blk” and “Conv3d proj Blk”.
The former one uses kernel size 7, and the latter three
use size 1. We use batch normalization followed with
ReLU for all convolution operations, except the final
convolution in “Conv3d proj Blk” where softmax is ap-
plied to the N dimension. No activation function is ap-
plied to “Conv2d proj” or the last convolution in “up-
Conv3d Blk”. For 3D spatial pyramid pooling (SPP) mod-
ule, we use four pooling scales ma linearly sampled from 1

to
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ing pooling kernel size ka =
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Na
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⌋
. For exam-

ple, given an input in the shape (10, 14, 14), the 4 scales
will be {1, 2, 3, 5}, and the corresponding pooling kernel
sizes are {(10, 14, 14), (5, 7, 7), (3, 4, 4), (2, 2, 2)}. We do
not include 3D SPP in the last two levels for the speed and

accuracy trade-off. The 2D SPP kernel sizes are the same
as the 3D SPP, except that the N dimension is excluded.

2. Focus Probability Visualization
As Figure 1 illustrates, the direct output of our network

in the scale level s is the focus probability distribution P s

(batch × 1 × frame ID × height × width), where ps(b,0,i,u,v)
indicates the probability of the pixel at coordinate (u, v) in
the frame i sample b to be the best-focused pixel. From
this perspective, the whole network can be viewed as a deep
focus measure.

To empirically prove this, we visualize the focus prob-
ability distribution of our full method (Ours-DFV) in Fig-
ure 2. The first three rows are from FoD500 dataset [3],
the next three rows are from DDFF-12 dataset [1], and the
last three rows are from Mobile depth dataset [8]. The
corresponding depth prediction results are available in Fig-
ures 3, 4, and 5, respectively. From Figure 2, we can ob-
serve, in all the samples, the peak of the best-focused pixel
distribution move from the closest objects toward the far-
thest objects as frame ID increases. This aligns with our
input frame order (ascending focal distances).

3. Additional Qualitative Results
Figure 3 and Figure 4 show additional qualitative results

on FoD500 and DDFF-12 datasets. Compared to DDFF [1]
and DefocusNet [3], our methods, especially Ours-DFV,
better preserve object boundaries and provide more smooth
depth estimations. Some examples are highlighted with the
red boxes. For uncertainty maps, the network turns to be
more confident in the closer objects and less confident in
objects that are farther or have weak textures. The high un-
certainty is also frequently observed in object boundaries.

Figure 5 illustrates the rest of the results on the aligned
scenes of the Mobile depth dataset. Differing from the other
samples, the focal stacks in rows 6-8 are taken from the
same scenes with different camera motions (zero, small,
and large), therefore have slightly different frame align-
ment. We refer readers to [8] for more details of this dataset.
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Figure 1. Our differential focus volume network architecture. The B, N , H , and W are the batch size, the input frame number the height,
and the width, respectively. The subscript s indicates the scale level.

From the results, we can see that all deep methods general-
ize well in these scenes without any fine-tuning. In rows
6-8, even though some bumpy predictions can be observed
in the books regions, all deep methods present reasonable
and consistent depth estimation regardless of the alignment

difference, respectively, which shows a certain degree of ro-
bustness to the alignment. Compared to other deep meth-
ods, Ours-DFV consistently provides more smooth estima-
tions with better boundary preservation, such as the front
objects in the first five rows.



Table 1. Ours-DFV results on DDFF-12 validation set with various number of input frames.

Method #Frm MSE ↓ RMS↓ log RMS ↓ Abs. rel.↓ Sqr. rel.↓ δ ↑ δ2 ↑ δ3 ↑ Bump.↓ avgUnc.↓ Time(ms)↓

Ours-DFV

2 9.68e−4 2.89e−2 2.87e−1 2.47e−1 10.26e−3 60.79 88.53 96.41 4.35e−1 10.73e−2 19.9
3 6.66e−4 2.35e−2 2.36e−1 2.00e−1 7.22e−3 71.13 93.28 97.91 4.26e−1 7.80e−2 22.8
4 6.45e−4 2.29e−2 2.34e−1 1.90e−1 6.92e−3 72.66 93.46 97.84 4.10e−1 6.05e−2 27.8
5 6.63e−4 2.35e−2 2.39e−1 1.86e−1 6.92e−3 70.17 92.94 97.96 4.21e−1 5.39e−2 33.3
6 6.01e−4 2.20e−2 2.25e−1 1.73e−1 6.50e−3 75.65 93.53 97.80 4.16e−1 4.58e−2 38.6
7 6.19e−4 2.22e−2 2.27e−1 1.77e−1 6.43e−3 74.77 93.45 97.80 4.19e−1 3.90e−2 44.5
8 5.92e−4 2.16e−2 2.14e−1 1.68e−1 6.00e−3 77.92 94.67 98.03 4.22e−1 3.96e−2 48.4
9 5.90e−4 2.18e−2 2.23e−1 1.86e−1 6.48e−3 74.02 94.58 98.20 4.20e−1 3.18e−2 55.1
10 6.45e−4 2.24e−2 2.18e−1 1.68e−1 5.57e−3 75.52 94.77 98.08 4.17e−1 2.05e−2 59.6

DDFF [1] 5 11.84e−4 3.05e−2 2.85e−1 2.19e−1 8.36e−3 56.00 87.60 97.11 4.37e−1 – 191.7
DefocusNet [3] 5 8.57e−4 2.56e−2 2.48e−1 1.80e−1 6.94e−3 73.16 92.04 96.86 4.45e−1 – 34.4

4. Effect of Focal Stack Size

Most traditional DFF methods [2, 4–7] focus on finding
the best-focused pixels in the given focal stack and are re-
stricted to the frame-level accuracy for focus analysis. The
input focal stack size can greatly affect their depth estima-
tion accuracy. To maintain good accuracy, those methods
usually take 10 - 30 frames per stack as input. In con-
trast, our methods estimate the best-focus distribution and
can achieve sub-frame accuracy. This characteristic helps
our model to deliver accurate depth estimation with fewer
frames.

To study the effect of focal stack size on our model,
we train Ours-DFV model on DDFF-12 training set and
test it on its validation set with different stack sizes, N =
2, ..., 10. We also retrain DDFF [1] and DefocusNet [3]
from scratch on the same training set as references. The
reason that we exclude FoD500 dataset in this experiment
is because it only has 5-frame focal stacks.

The evaluation metrics are the same as the experiment
metrics in the main text, which are adopted from [1]. They
are MSE, RMS, log RMS, absolute relative (Abs. rel.),
squared relative (Sqr. rel.), three accuracy percentages (δ,
δ2, δ3), bumpiness (Bump.), and average uncertainty (av-
gUnc.). The first 8 metrics reflect the estimation accuracy
from absolute and relative perspectives, the Bump. metric
evaluates the smoothness of results, and the avgUnc. is pro-
posed by us to compare the prediction confidence between
Ours-CV and Ours-DCV. avgUnc. = 1

M

∑M
j=1 ϕj , where

ϕj is the uncertainty of the depth estimation of pixel xj .
The lower the value, the higher the confidence.

Table 1 shows the evaluation result. Ours-DFV is able
to provide fairly accurate results with only 3-frame input
stacks. The MSE error of 3-frame inputs is only 12.9%
higher than the best case (9-frame inputs), and already out-
performs DDFF and DefocusNet which take 5 frames as
input. In general, the model delivers more accurate estima-
tions as the input stack size increases. It is evident by that
the best performances in terms of the first eight accuracy

metrics are all achieved by the models with N = {8, 9, 10}
frames. We believe the fluctuation is due to the random pro-
cess at the training time. As the frame number increases, the
model also turns to be more confident in terms of the aver-
age uncertainty, in the cost of the runtime. Moreover, for all
the cases, the model provides smooth depth predictions in
terms of bumpiness.

However, we do notice that the impact of additional
frames is diminishing as the frame number increases.
DDFF [1] also reports that their network performance on
DDFF-12 dataset stops improving after the frame number
reaches 10, which is the stack size they finally released to
the public. Further studies with a new dataset containing
more frames per stack are required to find the actual reason,
and we leave it for future work.
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Figure 2. Focus probability visualization. Rows 1-3, 4-6, and 7-9 are from FoD500, DDFF-12, and Mobile depth dataset, respectively. The
redder the color, the higher the probability.
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Figure 3. Qualitative results on FoD500 test set. The first column shows the first image in the input focal stack and the corresponding
ground truth. The next 4 columns show the depth predictions (rows 1, 3, 5, and 7) and the corresponding error map (rows 2, 4, 6, and 8).
The last column presents the corresponding uncertainty maps of Ours-FV (rows 1, 3, 5, and 7) and Ours-DFV (rows 2, 4, 6, and 8). The
warmer the color, the higher the value.
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Figure 4. Qualitative results on DDFF12 validation set. The first column shows the first image in the input focal stack and the corresponding
ground truth. The next 4 columns show the disparity predictions (rows 1, 3, 5, and 7) and the corresponding error map (rows 2, 4, 6, and
8). The last column presents the corresponding uncertainty maps of Ours-FV (rows 1, 3, 5, and 7) and Ours-DFV (rows 2, 4, 6, and 8).
The warmer the color, the higher the value.
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Figure 5. Qualitative results on Mobile depth dataset. The warmer the color, the larger the depth value.
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