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In Section 1 and Section 2, we provide the detailed ar-
chitecture designs for the superpixel segmentation network
and the stereo matching network, respectively. In Section 3,
we report additional qualitative results for superpixel seg-
mentation on BSDS500 and NYUv2, disparity estimation
on Sceneflow, HR-VS, and Middlebury-v3, and superpixel
segmentation on HR-VS.

1. Superpixel Segmentation Network
Table 1 shows the specific design of our superpixel seg-

mentation network. We use a standard encoder-decoder de-
sign with skip connections to predict the superpixel associa-
tion map Q. Batch normalization and leaky Relu with nega-
tive slope 0.1 are used for all the convolution layers, except
for the association prediction layer (assoc) where softmax
is applied.

Table 1. Specification of our superpixel segmentation network
architecture.

Name Kernel Str. Ch I/O InpRes OutRes Input
cnv0a 3 × 3 1 3/16 208 × 208 208 × 208 image
cnv0b 3 × 3 1 16/16 208 × 208 208 × 208 cnv0a
cnv1a 3 × 3 2 16/32 208 × 208 104 × 104 cnv0b
cnv1b 3 × 3 1 32/32 104 × 104 104 × 104 cnv1a
cnv2a 3 × 3 2 32/64 104 × 104 52 × 52 cnv1b
cnv2b 3 × 3 1 64/64 52 × 52 52 × 52 cnv2a
cnv3a 3 × 3 2 64/128 52 × 52 26 × 26 cnv2b
cnv3b 3 × 3 1 128/128 26 × 26 26 × 26 cnv3a
cnv4a 3 × 3 2 128/256 26 × 26 13 × 13 cnv3b
cnv4b 3 × 3 1 256/256 13 × 13 13 × 13 cnv4a

upcnv3 4 × 4 2 256/128 13 × 13 26 × 26 cnv4b
icnv3 3 × 3 1 256/128 26 × 26 26 × 26 upcnv3+cnv3b

upcnv2 4 × 4 2 128/64 26 × 26 52 × 52 icnv3
icnv2 3 × 3 1 128/64 52 × 52 52 × 52 upcnv2+cnv2b

upcnv1 4 × 4 2 64/32 52 × 52 104 × 104 icnv2
icnv1 3 × 3 1 64/32 104 × 104 104 × 104 upcnv1+cnv1b

upcnv0 4 × 4 2 32/16 104 × 104 208 × 208 icnv1
icnv0 3 × 3 1 32/16 208 × 208 208 × 208 upcnv0+cnv0b
assoc 3 × 3 1 16/9 208 × 208 208 × 208 icnv0

2. Stereo Matching Network
Table 2 shows the architecture design of stereo match-

ing network, in which we modify PSMNet [1] to per-
form superpixel-based downsampling/upsampling opera-
tions. We name it superpixel-based PSMNet (SPPSMNet).

Table 2. Specification of our stereo matching network (SP-
PSMNet) architecture.

Name Kernel Str. Input OutDim
Input

Img 1/2 H × W × 3

Superpixel segmentation and superpixel-based wnwnsampling
assoc 1/2 see Table 1 Img 1/2 H × W × 9

sImg 1/2 assoc 1/2 4 Img 1/2 1
4H × 1

4W × 3

PSMNet feature extractor
cnv0 1 3 × 3, 32 1 sImg 1/2 1

4H × 1
4W × 32

cnv0 2 3 × 3, 32 1 cnv0 1 1
4H × 1

4W × 32

cnv0 3 3 × 3, 32 1 cnv0 2 1
4H × 1

4W × 32

cnv1 x
[
3 × 3, 32

3 × 3, 32

]
× 3 1 cnv0 3 1

4H × 1
4W × 32

conv2 x
[
3 × 3, 64

3 × 3, 64

]
× 16 1 cnv1 x 1

4H × 1
4W × 64

cnv3 x
[
3 × 3, 128

3 × 3, 128

]
× 3 1 cnv2 x 1

4H × 1
4W × 128

cnv4 x
[
3 × 3, 128

3 × 3, 128

]
× 3, dila = 2 1 cnv3 x 1

4H × 1
4W × 128

PSMNet SPP module, cost volume, and 3D CNN
output 1

Please refer to [1] for details

1
4H× 1

4W × 1
4D×1

output 2 1
4H× 1

4W × 1
4D×1

output 3 1
4H× 1

4W × 1
4D×1

Superpixel-based upsampling

disp prb1
bilinear upsampling N.A.

output 1
1
4H × 1

4W × D

assoc 1 4 H × W × D

disp prb2
bilinear upsampling N.A.

output 2
1
4H × 1

4W × D

assoc 1 4 H × W × D

disp prb3
bilinear upsampling N.A.

output 3
1
4H × 1

4W × D

assoc 1 4 H × W × D

PSMNet disparity regression
disp 1 disparity regression N.A. disp prb1 H × W

disp 2 disparity regression N.A. disp prb2 H × W

disp 3 disparity regression N.A. disp prb3 H × W

The layers which are different from the orignal PSMNet
have been highlighted in bold face. In Table 2, we use input
image size 256 × 512 with maximum disparity D = 192,
which is the same as the original PSMNet, and we set
superpixel grid cell size 4 × 4 to perform 4× downsam-
pling/upsampling.

For stereo matching tasks with high resolution images
(i.e., HR-VS and Middilebury-v3), we use input image size
1024 × 2048 with maximum disparity D = 768, and we
set superpixel grid cell size 16× 16 to perform 16× down-
sampling/upsampling. To further reduce the GPU memory
usage, in the high-res stereo matching tasks, we reduce the



channel number of the layers “cnv4a” and “cnv4b” in the su-
perpixel segmentation network from 256 to 128, remove the
batch normalization operation in the superpixel segmenta-
tion network, and perform superpixel-based spatial upsam-
pling after the disparity regression.

3. Additional Qualitative Results
3.1. Superpixel Segmentation

Figure 1 and Figure 2 show additional qualitative results
for superpixel segmentation on BSDS500 and NYUv2. The
three learning-based methods, SEAL, SSN, and ours, can
recover more detailed boundaries than SLIC, such as the
hub of the windmill in the second row of Figure 1 and the
pillow on the right bed in the fourth row of Figure 2. Com-
pared to SEAL and SSN, our method usually generate more
compact superpixels.

3.2. Application to Stereo Matching

Figure 3, Figure 4, and Figure 6 show the disparity pre-
diction results on SceneFlow, HR-VS and Middlebury-v3,
respectively. Compared to PSMNet, our methods are able to
better preserve the fine details, such as the headset wire (the
seventh row of Figure 3) , street lamp post (the first row of
Figure 4) and the leaves (the fifth row of Figure 6). We also
observe that our method can better handle textureless areas,
such as the car back in the seventh row of Figure 4. It is
probably because our method directly downsample the im-
ages 16 times before sending them to the modified PSMNet,
while the original PSMNet only downsamples the image 4
times, and uses stride-2 convolution to perform another 4×
downsampling later. The input receptive filed (w.r.t. the
original image) of our method is actually larger than that of
original PSMNet, which enables our method to better lever-
age context information around the textureless area.

Figure 5 visualizes the superpixel segmentation results
of Ours fixed and Ours joint methods on HR-VS dataset.
In general, Superpixels generated by Ours joint are more
compact and pay more attentions to the disparity boundary.
The color boundaries that are not aligned with the disparity
boundary, such as the water pit on the road in the second
row of Figure 5, are often ignored by Ours joint. This phe-
nomenon reflects the influence of disparity estimation on
the superpixels in the joint training.
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Input GT segments SLIC SEAL SSN Ours

Figure 1. Additional superpixel segmentation results on BSDS500.

Input GT segments SLIC SEAL SSN Ours

Figure 2. Additional superpixel segmentation results on NYUv2.



Left image/GT PSMNet Ours fixed Ours joint

Figure 3. Disparity prediction results on SceneFlow. For each method, we show both the predicted disparity map (top) and the error map
(bottom). For the error map, the darker the color, the lower the end point error (EPE).



Left image/GT PSMNet Ours fixed Ours joint

Figure 4. Disparity prediction results on HR-VS. For each method, we show both the predicted disparity map (top) and the error map
(bottom). For the error map, the darker the color, the lower the end point error (EPE).



Left image Ours fixed Ours joint

Figure 5. Comparsion of superpixel segmentation results on HR-VS. Note we do not enforce the superpixel connectivity here.



Left image PSMNet Ours joint

Figure 6. Disparity estimation results on Middlebury-v3. For each method, we show both the predicted disparity map (top) and the error
map (bottom). For the error map, the darker the color, the lower the error. All the images are from Middlebury-v3 leaderboard.


